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Individualized Treatment Rules: Mathematical Statement

We want to estimate a decision function,

d : H −→ A = {0, 1},
where H ∈ H is the patient history and A ∈ A is the treatment
decision.

We call this function a individualized treatment rule (ITR).



ITR Estimation as Classification

An ITR, d, has value

V(d) = E {E[R|A = d(H)]} .

Optimal ITRs maximize the value.

Optimal ITRs minimize

E[R|A = 1] + E[R|A = −1]− V(d) = E
[

R
P(A|H) I(A̸=d(H))

]
.
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Outcome-Weighted Learning (OWL)

Outcome-Weighted Learning (OWL) estimates optimal
ITRs by minimizing a regularized, empirical version of this

error.



Support Vector Machines (SVM)

SVMs use hyperplanes to solve
classification problems.

The resulting classifier exists as

f(H) =
∑
i∈SV

αiAiK(Hi,H).



Privacy Implications of SVMs

Generally, the resulting decision function requires the
direct release of the support vectors.

f(H) =
∑
i∈SV

αiAi exp
(
−σ2∥Hi − H∥

)
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Differential Privacy: Mathematical Statement

We say that an estimator, M, is ϵ-differentially private if for all
neighbouring datasets, X and X†, we have:

P(M(X) ∈ Y)

P(M(X†) ∈ Y)
≤ eϵ.



Private Outcome-Weighted Learning (PrOWL)

We propose a differentially private implementation of OWL, called
PrOWL.

1. Approximate the kernel in finite dimensions.

2. Compute the standard OWL estimator.
3. Perturb the vector with Laplace distributed errors.
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PrOWL Guarantees

Quantifiable privacy-
accuracy tradeoffs.

Agreement on
meaningful

treatments w.h.p.

Agreement on
optimal value w.h.p.



Theorem (Noise Requirements for Privacy)
Suppose that we observe a dataset, X, with n observations, such that |Ỹi| ≤ ξ (i.e., the
modified rewards are bounded). Further, suppose that propensity scores are estimated
with bounded sensitivity, ∥π(x, α)− π(x, α′)∥∞ ≤ ζ, and are such that the estimated
P(A = 1|x;α) ∈ (cL, cH). Take ℓ to be an L-Lipschitz loss function, which is convex.
Under regularity conditions, using kernel K, and loss ℓ, the proposed private-WSVM
run on X with kernel K is ϵ-DP, provided the noise parameter λ is such that

λ ≳
Cξκ

√
F

ϵn
.



Theorem (Clinically Meaningful Accuracy)
Suppose that we observe a dataset, X, with n observations, and an F-dimensional
feature mapping, φ(·). Define an indifference parameter ∆ > 0, take β ∈ (0.5, 1),
and consider PrOWL with noise level λ ≲ −∆

log(2(1−
√
β))

. Under certain regularity
conditions, there is agreement between OWL and PrOWL with probability at
least β for all individuals with a true effect size greater than ∆.





Summary

Privacy should be a major concern within precision
medicine and beyond.

Differential privacy provides one framework for addressing
these concerns, with promising results thus far.
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